ad

カーボンネガティブ建築材料を開発、Matter誌に掲載(Carbon-Negative Building Material Developed at Worcester Polytechnic Institute Published in Matter)

ad

2025-12-05 ウースター工科大学 (WPI)

ウースター工科大学(WPI)の研究チームは、大気中のCO₂を吸収して硬化するカーボンネガティブ建材を開発した。これは産業副産物であるスラグや石灰系材料に特殊な水溶液を組み合わせ、CO₂と反応して炭酸塩鉱物を形成するプロセスを利用したもので、コンクリートと同等以上の機械的強度を示しつつ、製造時よりも吸収するCO₂量が上回るため、正味でマイナス排出を達成する。硬化プロセスは常温・常圧で進行し、追加の高温処理を必要としないためエネルギー消費も低い。研究では、材料内部の微細構造を解析し、CO₂鉱物化と強度発現の関係を明らかにした。建設業の脱炭素化に向け、舗装材、プレキャスト建材、補修材など幅広い応用が期待される。研究成果は Matter に掲載され、今後はスケールアップおよび耐久性評価が進められる予定である。

<関連情報>

毛細管懸濁法による耐久性と高強度を備えた炭素陰性酵素構造材料 Durable, high-strength carbon-negative enzymatic structural materials via a capillary suspension technique

Shuai Wang, Pardis Pourhaji, Dalton Vassallo, Sara Heidarnezhad, Suzanne Scarlata, Nima Rahbar
Matter  Available online: 3 December 2025
DOI:https://doi.org/10.1016/j.matt.2025.102564

カーボンネガティブ建築材料を開発、Matter誌に掲載(Carbon-Negative Building Material Developed at Worcester Polytechnic Institute Published in Matter)

Highlights

  • Enzyme-catalyzed mineralization enables bioinspired composite formation
  • Secondary phase controls porosity and mechanical properties
  • Hydrochar microstructure improves structural strength and environmental sustainability
  • Thermal curing yields strong CaCO3-bridged ternary composites

Progress and potential

Production of strong structural material is energy intensive. We present a strong, cost-effective, carbon-negative building material, named enzymatic structural material (ESM), that integrates enzymatically formed CaCO3 crystals into a hydrochar scaffold via capillary suspension. This enables versatile fabrication, rapid molding into various structures within hours, and scalability for mass production, bypassing the 28-day curing required for conventional concrete. ESM exhibits superior water durability and an average compressive strength of 25.8 MPa, exceeding the minimum strength for structural concrete, while requiring lower curing temperatures and reducing labor and environmental costs. Production of ESM sequesters 6.1 kg CO2/m3, while conventional concrete emits +330 kg CO2/m3. Its repairability extends material lifespan, lowers maintenance needs, and reduces construction waste, positioning ESM as a sustainable alternative for applications such as roof decks and wall bricks. Future work will focus on improving mechanical properties, large-scale production, durability, and ecological efficiency. Continued development may enable reinforced and functional structural applications while maintaining or further reducing CO2 emissions.

Summary

The low-energy production of strong, carbon-negative construction materials is among the most challenging problems in materials science and a crucial step in addressing the climate crisis. Although incorporating biomaterials reduces carbon emissions, these products are not water resistant and require a protective layer. Herein, we describe an enzymatic structural material (ESM) that employs a capillary suspension technique combined with an enzyme mixture to integrate precipitated calcium minerals into a sand and carbon matrix. ESM exhibits high water stability with a minimal strength decrease compared to other biologically inspired construction materials, like hydrogel-based scaffolds, and its mechanical strength is close to the compressive strength of structural concrete. Importantly, ESM production consumes 6.1 kg CO2/m3, in contrast to traditional concrete production, which emits approximately 330 kg CO2/m3, thus aligning with the need for low-carbon building solutions. The physical characterization of ESM confirms its potential as a structural material for advancing sustainable construction technologies.

ad
0911建設環境
ad
ad


Follow
ad
ad
タイトルとURLをコピーしました