ad

カーボンネガティブ材料がコンクリートとセメントの持続可能性を向上(New Carbon-Negative Material Could Make Concrete and Cement More Sustainable)

ad

2025-03-19 ノースウェスタン大学

カーボンネガティブ建築材料

ノースウェスタン大学の研究者たちは、海水、電気、二酸化炭素(CO₂)を利用して、カーボンネガティブな建築材料を開発しました。 従来、CO₂の大気中からの回収は地下への貯留が一般的でしたが、この新しい手法では、CO₂を恒久的に固定し、コンクリートやセメント、石膏、塗料の製造に利用可能な価値ある材料に変換します。さらに、このプロセスでは、水素ガスも生成され、クリーンな燃料として輸送などに活用できます。この技術は、建設業界の持続可能性を高め、CO₂排出削減に寄与する可能性があります。

<関連情報>

海水中における炭素捕捉鉱物の電解析出による電気化学ポテンシャルと二酸化炭素注入量の可変化 Electrodeposition of Carbon-Trapping Minerals in Seawater for Variable Electrochemical Potentials and Carbon Dioxide Injections

Nishu Devi, Xiaohui Gong, Daiki Shoji, Amy Wagner, Alexandre Guerini, Davide Zampini, Jeffrey Lopez, Alessandro F. Rotta Loria
Advanced Sustainable Systems  Published: 18 March 2025
DOI:https://doi.org/10.1002/adsu.202400943

Details are in the caption following the image

Abstract

Seawater offers immense potential for addressing global energy and climate challenges. Electrochemical seawater splitting is a sustainable approach for hydrogen production and carbon dioxide (CO2) sequestration, producing hydrogen gas at the cathode and oxygen or chlorine gas at the anode. Simultaneously, minerals such as calcium carbonate and magnesium hydroxide precipitate at the cathode, especially when coupled with CO2 injections for the sake of CO2 sequestration. These precipitates are often dismissed as energy-intensive byproducts. However, they have untapped potential as resources for construction, manufacturing, and environmental remediation. Here, a comprehensive experimental investigation is presented into the electrochemical precipitation of minerals in seawater under varying operational conditions. By systematically varying applied voltage, current density, and CO2 flow rate, the conditions that optimize mineral yield and selectivity while minimizing energy consumption are revealed. The findings advance the understanding of electrochemical synthesis and material processing in aqueous solutions, with a particular focus on the mineralization of calcareous compounds and their transformation into large-scale aggregates. These findings also support an additional and highly scalable application of seawater electrolysis, encompassing not only oceanic renewable hydrogen production and CO2 sequestration but also the sustainable production of carbon-trapping minerals and aggregates.

ad
0911建設環境
ad
ad


Follow
ad
ad
タイトルとURLをコピーしました