ad

科学者、長期洪水予測に人間の要素を加える(Scientists add human element to long-term flood predictions)

ad

2024-07-17 オークリッジ国立研究所(ORNL)

オークリッジ国立研究所(ORNL)の科学者たちは、気候変動による長期的な洪水リスクをより正確に予測するための3Dモデリングフレームワークを開発しました。このモデルは、降雨が地形に与える影響を詳細にシミュレートし、都市計画に役立つツールを提供します。研究はテキサス州南東部の都市地域を対象に行われ、頻繁な洪水から希少な洪水までのリスクを評価しました。結果は『Journal of Hydrology』に掲載されました。この新しいフレームワークは、物理ベースのモデルを使用し、洪水プロセスを捉えることで将来の条件に適応可能です。モデルはAmanzi-ATSソフトウェアを利用し、複雑な地質や土地利用の変化を考慮しています。次のステップでは、将来の気候予測や土地利用変化を反映した洪水応答をシミュレートし、都市計画者が適切な対策を講じるためのツールを提供することを目指しています。

<関連情報>

洪水ハザードと住民の洪水暴露を評価するためのプロセスベースの洪水頻度解析の進展 Advancing process-based flood frequency analysis for assessing flood hazard and population flood exposure

Gabriel Perez, Ethan T. Coon, Saubhagya S. Rathore, Phong V.V. Le

Journal of Hydrology  Available online: 6 July 2024

DOI:https://doi.org/10.1016/j.jhydrol.2024.131620

Highlights

  • An Integrated Surface-Subsurface Hydrological model is used to simulate flood events.
  • Stochastic storm transposition is used for process-based Flood Frequency Analysis.
  • Peak flows, flood extent, and population exposure are estimated for 5000 storm events.
  • Frequency analysis is conducted at the basin scale up to the 500-year return period.

Abstract

Recent studies have showcased the use of process-based hydrological models with Stochastic Storm Transposition (SST) techniques to conduct Flood Frequency Analysis (FFA). This framework, referred hereby FFA-SST, has proved to be a robust strategy to estimate peak flows of specific annual exceedance probability (e.g., 100-year peak flow) that can reflect natural and anthropogenic disturbances, including changes in land use and meteorological patterns. With the objective of advancing the FFA-SST framework, this study presents for the first time the use of a spatially-resolved Integrated Surface-Subsurface Hydrological Model (ISSHM) to conduct FFA-SST. This allows us to extend the analysis from peak flow responses to flood extent, enabling a unique view and analysis of flood hazard and population flood exposure at the basin scale. As a proof-of-concept, we used the ISSHM, Amanzi–ATS, and the SST model, RainyDay, to conduct FFA-SST by simulating the flood response to 5000 annual synthetic storm events in a ∼2000km2 Southeast Texas watershed. We demonstrate that ATS, without site-specific calibration, provides a robust process-based representation of peak flows, flood extent, streamflow, evapotranspiration, soil moisture content, and water storage changes. Our results and analyses, covering frequency curves up to a 500-year return period for peak flows, basin inundation fractions, and the number of people exposed to flooding, offer a unique perspective to analyze flood impacts across spatial scales. Overall, this study provides critical insights for flood risk management by extending the FFA-SST framework to include both flood hazard and population flood exposure analyses at the basin scale. Such an approach will empower stakeholders and disaster emergency agencies with a more comprehensive understanding of flood impacts across the entire basin domain, facilitating informed decision-making for flood risk assessment and management.

ad
0904河川砂防及び海岸海洋
ad
ad


Follow
ad
ad
タイトルとURLをコピーしました