ad

AIで交通事故のリスクを予測する新ツールを開発(Researchers develop AI tool to predict risk of vehicle crashes)

ad

2025-10-07 ジョンズ・ホプキンス大学(JHU)

ジョンズ・ホプキンス大学の研究チームは、AIを用いて米国内の交通事故リスクを予測・分析する新ツール「SafeTraffic Copilot」を開発した。大規模言語モデル(LLM)を活用し、道路設計、交通量、気象、運転行動など複合要因を統合的に評価。テキスト・数値・衛星画像・現場写真を学習し、事故発生地点を高精度で予測する。学習データが増えるほど精度が向上し、信頼度(例:70%)も定量化可能。成果は『Nature Communications』に掲載され、交通工学と都市安全政策の新基盤として期待される。

AIで交通事故のリスクを予測する新ツールを開発(Researchers develop AI tool to predict risk of vehicle crashes)
Image credit: Johns Hopkins University

<関連情報>

SafeTraffic Copilot: 信頼性の高い交通安全評価と意思決定介入のための大規模言語モデルの適応 SafeTraffic Copilot: adapting large language models for trustworthy traffic safety assessments and decision interventions

Yang Zhao,Pu Wang,Yibo Zhao,Hongru Du & Hao Frank Yang
Nature Communications  Published:07 October 2025
DOI:https://doi.org/10.1038/s41467-025-64574-w

Abstract

Predicting expected traffic crashes and designing targeted interventions are highly challenging due to the inherent complexity of crash data and persistent concerns over the prediction trustworthiness. We introduce SafeTraffic Copilot that adapts Large Language Models (LLMs) to perform expected crash prediction as a text-reasoning task, then attribute critical features for targeted safety interventions. Within the Copilot, SafeTraffic LLM is customized then fine-tuned on the textualized SafeTraffic Event dataset, which consists of 66,205 real-world crash cases with 14.5 million words from five U.S. states. Across multiple prediction tasks including crash type, severity, and number of injuries, SafeTraffic LLM demonstrates a 33.3% to 45.8% improvement in average F1-score over existing works. To interpret these results and inform safety interventions, we introduce SafeTraffic Attribution, a sentence-level feature-attribution framework enabling conditional “what-if” risk analysis. Findings reveal that alcohol-impaired driving is the leading factor for severe crashes, with impairment-related and aggressive behaviors contributing nearly three times more risk than other behaviors. Furthermore, SafeTraffic Attribution identifies critical features during fine-tuning, guiding crash data collection strategies for continual improvement. SafeTraffic Copilot enables prediction and reasoning of conditional crash risks through foundation models, thereby supporting traffic safety improvements and offering clear advantages in generalization, adaptation, and trustworthiness.

タイトルとURLをコピーしました