ad

グリッドシェルの新しい形状決定手法~複雑形状も設計可能に~

ad

2025-12-08 東京大学

東京大学の三木優彰助教と米国Thornton TomasettiのToby Mitchell氏の研究グループは、建築曲面構造であるグリッドシェルの形状決定手法を大幅に改善した。従来はAiryの応力関数のみを用いるため、複雑な境界形状では計算が破綻し、さらに大規模計算にはGPUを用いて数日を要するなど実用上の制約が大きかった。本研究では、ほとんど活用例のなかったSchaefer–Gurtin応力関数を新たに統合することで、複雑なトポロジーでも全ての平面応力状態を安定して記述できるようになり、形状計算の破綻を解消した。加えて、計算のボトルネックであった逆行列の陽的計算を回避する数値解法を導入し、計算時間をGPUで4日からCPUのみで1.5時間へと劇的に短縮した。この成果により、一般的なラップトップPC上で自由度の高いグリッドシェル形状を迅速に設計でき、建築実務における形状探索のハードルを大きく下げると期待される。成果はSIGGRAPH Asia 2025採択、ACM TOGに掲載された。

グリッドシェルの新しい形状決定手法~複雑形状も設計可能に~
複雑な境界形状をもつグリッドシェルの形状の計算結果

<関連情報>

位相的に任意の境界を持つ領域におけるNURBSベースのグリッドシェル形状の検出 NURBS-Based Grid Shell Form Finding on Domains with Topologically Arbitrary Boundaries

Masaaki Miki, Toby Mitchell
ACM Transactions on Graphics  Published: 04 December 2025
DOI:https://doi.org/10.1145/3763284

Abstract

In architecture, special attention is paid to the shapes of thin curved surface structures known as shells. Ideally, shells should have shapes that can support their self-weight without bending. These shapes rely solely on in-plane stresses flowing along the surface, resulting in highly efficient thin structures. The process of finding the shape of a shell is called form finding. In the context of form finding of shells, the computation of another surface, called the Airy stress function, often plays a key role. An Airy stress function is a smooth and continuous surface whose horizontal projection matches the shell, with stress distribution information encoded in its curvatures.

However, some form-finding problems, particularly those involving topologically complex boundary curves, cannot be easily solved due to a limitation of the Airy stress function. By construction, it cannot represent stress distributions that transmit net forces between disjoint domain boundaries. Formally, the Airy stress function is incomplete: It cannot represent all valid stress fields. It requires extension to capture the case of interacting boundaries.

In this paper, we address the limitation of the Airy stress function by reintroducing a previously overlooked additional stress function originally presented by Schaefer [1953] and Gurtin[1963]. In combination with the Airy stress function, this formulation was shown by Gurtin[1972] to represent all possible stress states, regardless of the topological complexity of the domain boundary. Using several examples, we demonstrate that topologically complex boundaries with interacting forces can be solved using this stress function inserted in combination with the Airy stress function.

ad
92建築
ad
ad


Follow
ad
ad
タイトルとURLをコピーしました