ad

人工知能は河川の流出量を予測し、洪水の可能性を警告することができる(Artificial intelligence can be used to predict river discharge and warn of potential flooding, new Concordia study shows)

ad

2024-11-18 カナダ・コンコルディア大学

コンコルディア大学の研究者、モハメド・アルメトワリー・アーメド氏とサム・リー教授は、人工知能(AI)を活用して河川の流量を予測し、洪水の可能性を警告する新しい手法を開発しました。彼らは、オタワ川の2つの水位観測所間の水の移動速度(移流)を測定し、歴史的データと気象情報をAIモデルに入力することで、短期的な河川流量を高精度に予測することに成功しました。この手法は、洪水の早期警報システムの精度向上に寄与し、被害の軽減に役立つと期待されています。

<関連情報>

河川流量予測のための機械学習モデル: カナダ・オタワ川のケーススタディ Machine Learning Model for River Discharge Forecast: A Case Study of the Ottawa River in Canada

M. Almetwally Ahmed andS. Samuel Li
Hydrology  Published: 12 September 2024
DOI:https://doi.org/10.3390/hydrology11090151

人工知能は河川の流出量を予測し、洪水の可能性を警告することができる(Artificial intelligence can be used to predict river discharge and warn of potential flooding, new Concordia study shows)

Abstract

River discharge is an essential input to hydrosystem projects. This paper aimed to modify the group method of data handling (GMDH) to create a new artificial intelligent forecast model (abbreviated as MGMDH) for predicting discharges at river cross-sections (CSs). The basic idea was to optimise the weights for selected hydrometric and meteorological predictors. One novelty of this study was that MGMDH could take the discharge observed from a neighbouring CS as a predictor when observations from the CS of interest had ceased. Another novelty was that MGMDH could include meteorological parameters as extra predictors. The model was validated using data from natural rivers. For given lead times, MGMDH automatically determined the best forecast equations, consistent with physical river hydraulics laws. This automation minimised computing time while improving accuracy. The model gave reliable forecasts, with a coefficient of determination greater than 0.978. For lead times close to the advection time from upstream to the CS of interest, the forecast had the highest reliability. MGMDH results compared well with some other machine learning models, like neural networks and the adaptive structure of the group method of data handling. It has potential applications for efficiently forecasting discharge and offers a tool to support flood management.

ad
0904河川砂防及び海岸海洋
ad
ad


Follow
ad
ad
タイトルとURLをコピーしました