ad

衛星画像と機械学習を用いて都市環境の洪水をマッピングする新しいモデル(New model uses satellite imagery, machine learning to map flooding in urban environments)

ad

2024-07-31 ノースカロライナ州立大学(NCState)

気候変動により嵐が激化する中、未調査地域の洪水をマッピングする新しいツールが必要です。ノースカロライナ州立大学の新しいマッピングツールは、機械学習とオープンソースの衛星画像を使用して都市環境での洪水をモデル化します。このモデルは都市部の洪水予測マップを作成し、都市計画者が洪水対策と予防資源の割り当てに役立つ情報を提供します。研究チームは、ハリケーン・アイダのデータを使用し、手動でポリゴンを描いて機械学習モデルを訓練しました。結果、連邦緊急事態管理庁(FEMA)の洪水ゾーンと比較し、最小危険地域でも洪水が発生していることを確認しました。今後の研究では、モデルの簡略化や洪水深度の表示、新しいマップのオープンソース化が予定されています。

<関連情報>

衛星画像と機械学習を用いた都市部の洪水範囲の定量化 Quantifying urban flood extent using satellite imagery and machine learning

Rebecca W. Composto,Mirela G. Tulbure,Varun Tiwari,Mollie D. Gaines & Júlio Caineta
Natural Hazards  Published:27 July 2024
DOI:https://doi.org/10.1007/s11069-024-06817-5

Graphical abstract

衛星画像と機械学習を用いて都市環境の洪水をマッピングする新しいモデル(New model uses satellite imagery, machine learning to map flooding in urban environments)

Abstract

The risk of floods from tropical storms is increasing due to climate change and human development. Maps of past flood extents can aid in planning and mitigation efforts to decrease flood risk. In 2021, Hurricane Ida slowed over the Mid-Atlantic and Northeast United States and released unprecedented rainfall. Satellite imagery and the Random Forest algorithm are a reliable combination to map flood extents. However, this combination is not usually applied to urban areas. We used Sentinel-2 imagery (10 m), along with derived indices, elevation, and land cover data, as inputs to a Random Forest model to make a new flood extent for southeastern Pennsylvania. The model was trained and validated with a dataset created with input from PlanetScope imagery (3 m) and social media posts related to the flood event. The overall accuracy of the model is 99%, and the flood class had a user’s and producer’s accuracy each over 97%. We then compared the flood extent to the Federal Emergency Management Agency flood zones at the county and tract level and found that more flooding occurred in the Minimal Hazard zone than in the 500-year flood zone. Our Random Forest model relies on publicly available data and software to efficiently and accurately make a flood extent map that can be deployed to other urban areas. Flood extent maps like the one developed here can help decision-makers focus efforts on recovery and resilience.

ad
0904河川砂防及び海岸海洋
ad
ad


Follow
ad
ad
タイトルとURLをコピーしました