新たなアプローチは追加コストなしで交通渋滞を緩和できる(New approach can reduce traffic congestion at no extra cost) | テック・アイ建設技術
ad

新たなアプローチは追加コストなしで交通渋滞を緩和できる(New approach can reduce traffic congestion at no extra cost)

ad

2024-10-04 スイス連邦工科大学ローザンヌ校(EPFL)

EPFLとETH Zurichの研究者が、通勤ラッシュ時の交通渋滞を費用負担なしで緩和する新しいシステム「CARMA」を開発しました。このシステムでは、通勤者が混雑した遅い車線と、クレジット(「カルマ」)を使用して走る速い車線のどちらかを選べます。クレジットは日々再配分され、経済格差が生じない仕組みです。また、個人データを収集しないためプライバシーも保護されます。CARMAは従来の有料システムと同等の効果があることが数学的に証明されています。

<関連情報>

CARMA:非流通カルマ・クレジットによる公平で効率的なボトルネック渋滞管理 CARMA: Fair and Efficient Bottleneck Congestion Management via Nontradable Karma Credits

Ezzat Elokda ,Carlo Cenedese ,Kenan Zhang ,Andrea Censi ,John Lygeros ,Emilio Frazzoli,Florian Dörfler

Transportation  science  Published Online:11 Sep 2024

DOI:https://doi.org/10.1287/trsc.2023.0323

新たなアプローチは追加コストなしで交通渋滞を緩和できる(New approach can reduce traffic congestion at no extra cost)

Abstract

This paper proposes a nonmonetary traffic demand management scheme, named CARMA, as a fair solution to the morning commute congestion. We consider heterogeneous commuters traveling through a single bottleneck that differ in both the desired arrival time and value of time (VOT). We consider a generalized notion of VOT by allowing it to vary dynamically on each day (e.g., according to trip purpose and urgency) rather than being a static characteristic of each individual. In our CARMA scheme, the bottleneck is divided into a fast lane that is kept in free flow and a slow lane that is subject to congestion. We introduce a nontradable mobility credit, named karma, that is used by commuters to bid for access to the fast lane. Commuters who get outbid or do not participate in the CARMA scheme instead use the slow lane. At the end of each day, karma collected from the bidders is redistributed, and the process repeats day by day. We model the collective commuter behaviors under CARMA as a dynamic population game (DPG), in which a stationary Nash equilibrium (SNE) is guaranteed to exist. Unlike existing monetary schemes, CARMA is demonstrated, both analytically and numerically, to achieve (a) an equitable traffic assignment with respect to heterogeneous income classes and (b) a strong Pareto improvement in the long-term average travel disutility with respect to no policy intervention. With extensive numerical analysis, we show that CARMA is able to retain the same congestion reduction as an optimal monetary tolling scheme under uniform karma redistribution and even outperform tolling under a well-designed redistribution scheme. We also highlight the privacy-preserving feature of CARMA, that is, its ability to tailor to the private preferences of commuters without centrally collecting the information.

ad
0907道路
ad
ad


Follow
ad
ad
タイトルとURLをコピーしました