ad

高解像度3D都市マッピングのためのAIレーダー技術を開発(Researchers Develop AI-Powered Radar Technique for High-Resolution 3D Urban Mapping)

ad

2025-07-07 中国科学院(CAS)

高解像度3D都市マッピングのためのAIレーダー技術を開発(Researchers Develop AI-Powered Radar Technique for High-Resolution 3D Urban Mapping)

Optical images of the surveyed area (A) oblique photography (B) top view with information annotated. (Image by AIR)

中国科学院空天信息研究院(AIR)の研究チームが、AIと建築形状情報を融合した新手法「Geo-SETRA」を開発し、レーダーデータから高精度な都市3D地図を生成する技術を確立した。従来のTomoSAR技術は都市部の複雑な構造により画像が不完全になる課題があったが、Geo-SETRAは屋根や壁、窓などの建築的特徴をアルゴリズムに取り入れることで、情報の欠落を補完し詳細度を向上させる。手法は、粗い3DマップをAIとコンピュータビジョンで精緻化し、ベイズモデルにより再構築を行う多段階プロセス。蘇州市のレーダーデータでの実証では、サブメートル級の精度で窓枠や屋根の縁など微細構造を再現し、従来技術を大きく上回る成果を達成。スマートシティや災害対応への応用が期待される。

<関連情報>

都市部における幾何学的意味拡張TomoSAR再構成アルゴリズム: 解析と応用 A Geometric Semantic Enhanced TomoSAR Reconstruction Algorithm in an Urban Area: Analysis and Application

Chunyi Wang, Qiancheng Yan, Xiaolan Qiu, Yitong Luo, […] , and Zhe Zhang

Journal of Remote Sensing  Published:23 Jun 2025

DOI:https://doi.org/10.34133/remotesensing.0583

Abstract

Tomographic synthetic aperture radar (TomoSAR) has the ability to separate mixed scatterers, making it highly suitable for urban 3-dimensional (3D) reconstruction. However, Urban TomoSAR imaging still faces challenges such as resolution limitations, multipath effects, the uncertainty on the flight track, and registration errors, resulting in sparse point clouds with holes and low accuracy. In this paper, we propose a Geometric Semantic Enhanced TomoSAR Reconstruction Algorithm (Geo-SETRA) for urban area. Geo-SETRA integrates geometric structures, extracted from TomoSAR point clouds, as prior distributions for elevation estimation using Bayesian methods. We first construct a sparse optimization model based on both compressed sensing and maximum a posteriori estimation, and also give its solution. Further, the Cramér–Rao lower bound of this algorithm is derived to theoretically illustrate how it improves imaging accuracy. Both simulated data and real-data experiments prove that our method is feasible and effective in urban 3D reconstruction. As a result, our method successfully produced a dense and realistic 3D scattering model for urban areas with minimal postprocessing, preserving detailed geometric structures and retaining over 80% of the points in the final model.

タイトルとURLをコピーしました