ad

熱化学技術がビル暖房に有望な道を示す(News Release: Thermochemical Tech Shows Promising Path for Building Heat)

ad

2024-11-13 米国国立再生可能エネルギー研究所(NREL)

熱化学技術がビル暖房に有望な道を示す(News Release: Thermochemical Tech Shows Promising Path for Building Heat)
A laboratory-scale thermochemical materials reactor is filled with a strontium chloride cement composite. Photo from NETenergy

米国エネルギー省の国立再生可能エネルギー研究所(NREL)の研究者は、塩水和物を用いた熱化学材料(TCM)が、特に湿度の高い地域での建物の暖房に効果的であることを明らかにしました。TCMは水蒸気との反応で熱を放出し、建物の暖房システムに柔軟性を提供します。研究では、ストロンチウム塩化物を用いたTCMリアクターの性能を評価し、湿度の供給源がシステムの効率に大きな影響を与えることが示されました。この技術は、電力需要のピークシフトや再生可能エネルギーの活用促進に寄与する可能性があります。

<関連情報>

ビル暖房用のオープンサイクル熱化学エネルギー貯蔵: 実用的なシステム構成と有効エネルギー密度 Open-cycle thermochemical energy storage for building space heating: Practical system configurations and effective energy density

Yi Zeng, Ruby-Jean Clark, Yana Galazutdinova, Adewale Odukomaiya, Said Al-Hallaj, Mohammed Farid, Sumanjeet Kaur, Jason Woods
Applied Energy  Available onlin:e 19 August 2024
DOI:https://doi.org/10.1016/j.apenergy.2024.124218

Highlights

  • Developed and validated a 1D model of an open-cycle reactor using salt-hydrate thermochemical materials (TCM).
  • Simulated HVAC+TCM configurations and evaluated performance across various building types and climate conditions.
  • Chosen configuration uses exhaust air from the building to discharge the TCM to avoid drying out the indoor space.
  • Highest energy density/lowest cost in applications with higher indoor humidity (humidified buildings or humid climates).
  • Energy density and cost effectiveness can be improved through improved TCM properties.

Abstract

Salt-hydrate thermochemical materials (TCM) are promising candidates for energy storage systems for building space heating due to their high theoretical energy density and the need for low regeneration temperature. However, water vapor is required to drive the hydration process of the TCM reactor, which poses a challenge during winter when water vapor is typically scarce. Using indoor air directly lowers the building’s humidity to an unconformable level in practice, while the cold outdoor air contains limited moisture. Here we consider different integration strategies for open-cycle TCM reactors in buildings and develop a model to simulate their thermal performance across diverse buildings and climates, specifically for building space heating. The potential energy densities and the levelized cost of storage of the TCM reactor are evaluated in practical scenarios to demonstrate the load-shifting potential of TCM systems for heating applications. We use a strontium chloride (SrCl2)-based composite as the baseline and explore the impact of various reactor and material changes to the energy density and levelized cost of storage.

ad
92建築
ad
ad


Follow
ad
ad
タイトルとURLをコピーしました