ad

AIがインフラの欠陥検出と監視を支援(AI helps detect and monitor infrastructure defects)

ad

2024-09-25 スイス連邦工科大学ローザンヌ校(EPFL)

EPFLの研究チームは、AIを活用してインフラのひび割れ検出と進行状況のモニタリングを効率化する方法を開発しました。アルゴリズムはコンクリート構造物の画像からひび割れを検出し、経年変化を追跡することが可能です。この方法により、鉄道運営者は保守計画をより効果的に立てられるようになります。研究はスイスのツェルマットとブリーク間の鉄道路線で試験される予定で、保守点検の自動化と精度向上を目指しています。

<関連情報>

説明可能なAIによる分類からセグメンテーションへ:亀裂検出と成長モニタリングに関する研究 From classification to segmentation with explainable AI: A study on crack detection and growth monitoring

Florent Forest  Hugo Porta, Devis Tuia, Olga Fink
Automation in Construction  Available online: 14 June 2024
DOI:https://doi.org/10.1016/j.autcon.2024.105497

AIがインフラの欠陥検出と監視を支援(AI helps detect and monitor infrastructure defects)

Highlights

  • Crack segmentation and monitoring via classifier explanations.
  • Without the need for pixel-level labels.
  • Benchmarking various XAI methods.
  • Extension of the Neural Network Explainer for damage classification proposed.
  • Evaluating crack severity quantification and growth monitoring.

Abstract

Monitoring surface cracks in infrastructure is crucial for structural health monitoring. Automatic visual inspection offers an effective solution, especially in hard-to-reach areas. Machine learning approaches have proven their effectiveness but typically require large annotated datasets for supervised training. Once a crack is detected, monitoring its severity often demands precise segmentation of the damage. However, pixel-level annotation of images for segmentation is labor-intensive. To mitigate this cost, one can leverage explainable artificial intelligence (XAI) to derive segmentations from the explanations of a classifier, requiring only weak image-level supervision. This paper proposes applying this methodology to segment and monitor surface cracks. We evaluate the performance of various XAI methods and examine how this approach facilitates severity quantification and growth monitoring. Results reveal that while the resulting segmentation masks may exhibit lower quality than those produced by supervised methods, they remain meaningful and enable severity monitoring, thus reducing substantial labeling costs. Code and data available at https://github.com/EPFL-IMOS/crack-explanations.

ad
0902鋼構造及びコンクリート
ad
ad


Follow
ad
ad
タイトルとURLをコピーしました