ad

有機物が土壌中で水分を保持する仕組み — 乾燥した条件下でも(How organic matter traps water in soil — even in the driest conditions)

ad

2025-08-11 ノースウェスタン大学

ノースウェスタン大学の研究チーム(Ludmilla Aristilde教授ら)が、土壌中の有機物が干ばつ条件下でも水分を保持する分子メカニズムを、世界で初めて明らかにしました。PNAS Nexus誌に発表されたこの研究では、粘土鉱物とブドウ糖(グルコース)、アミロース、アミロペクチンといったさまざまな炭水化物を混合した実験から、有機分子が水分子を「粘着性の架け橋」としてつなぎ、ミネラル表面や土粒子間に水分を閉じ込めるしくみを発見しました。これは、土壌が長期間にわたって“スポンジ”のように機能する基礎的仕組みの解明であり、将来的には乾燥地帯でも水分を保持するように「土壌を化学的に設計」する、革新的な土壌改良技術への応用が期待されています。

有機物が土壌中で水分を保持する仕組み — 乾燥した条件下でも(How organic matter traps water in soil — even in the driest conditions)Illustration of water trapped as molecular bridges at carbohydrate-clay interfaces. Image by the Aristilde Research Group

<関連情報>

炭水化物と粘土の界面における水分保持のメカニズム Mechanisms of water retention at carbohydrate-clay interfaces

Sabrina E Kelch , Benjamin Barrios-Cerda , Yeonsoo Park , Eric Ferrage , Ludmilla Aristilde
PNAS Nexus  Published:09 August 2025
DOI:https://doi.org/10.1093/pnasnexus/pgaf259

Abstract

Clay minerals are well documented to facilitate retention of water and organic matter in terrestrial soils, Martian regolith, and meteorites. Yet, the mechanisms underlying water trapping within these mineral-organic matter associations are poorly understood. Here, we investigate these mechanisms with montmorillonite, a smectite clay, populated with carbohydrates of different structures. By capturing relative proportion of bound versus freely exchangeable waters by mass spectrometry during thermogravimetric analysis, we observe up to 2.3-fold increase in bound waters in samples with adsorbed carbohydrates. Temperature-dependent carbon loss from adsorbed 13C-labeled carbohydrate reveals promoted organic carbon trapping at low moisture. We determine that the amount of this trapped carbon is correlated positively with the population of bound waters. Molecular dynamics simulations of a carbohydrate-populated clay nanopore identify different interfacial waters, involving direct single or multiple hydrogen bonds on the clay surface without or with simultaneous hydrogen bonding with adsorbed carbohydrates. Quantum mechanics-based computations highlight up to 5-fold greater binding energy for bound waters associated with adsorbed carbohydrates on the clay surface, compared to bound waters in the absence of carbohydrates. Thus, our experimental and theoretical results collectively reveal that interfacial waters bridging hydrated organic matter to the clay surface promote water trapping within mineral-organic associations.

タイトルとURLをコピーしました